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Abstract: Electromyography (EMG) signals that obtained by electrodes connected to the forearm are the monitoring of the muscles by the 

electrical method. These signals are quite useful during the use of prosthesis as a source signal to the moving prosthesis. Therefore, it is 

essential that classifying the EMG signals with high accuracy by analyzing. This study aims that classifying the individual and combined 

finger movements using surface EMG signals taken from the surface of the human forearm. EMG signals that belong to 10 different finger 

movements obtained from eight subjects were used. Firstly, EMG signals have been split into segments by the windowing process, and 

temporal feature vectors are formed by applying various feature extraction methods to these segments.  Feature vectors have been classified 

with the ensemble bagged tree algorithm, which is a combination of classifiers, to obtain the correct classification decision. As a result of 

10-fold cross-validation, with the proposed method, 96.6% overall classification accuracy was achieved. The results obtained show that 

the ensemble classifier can be used successfully in determining finger movements when compared with similar studies. 
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1. Introduction 

Electromyogram (EMG) is a biopotential signals generated by 

muscle contraction [1]. Various electrochemical events in the body 

generate these signals. The transmitted stimulating potentials from 

the brain through the nerves constitute the Motor Unit Action 

Potentials (MUAP). Muscle contraction occurs due to MUAP 

electrical potential Motor neurons are linked to one or several 

muscle fiber groups. Contraction or relaxation occurs depending 

on the level of potential change in muscles triggered by MUAP [2]. 

The amount of muscle contraction increases with the increase in 

the number and frequency of MUAPs. The examination of MUAPs 

in cases of muscle fiber contraction and relaxation is used to 

determine muscular problems. Electrical changes occur in muscles 

as a result of MUAPs [3].  

In EMG, the signals can be received by two different methods, 

either invasive or non-invasive, depending on the electrodes used 

[4]. In the invasive method that is used needle electrodes, the 

signals received from the muscles have higher amplitude and 

therefore, more reliable. Accordingly, more detailed analysis of 

muscles can be performed by the invasive method. However, this 

method has significant disadvantages such as long processing time 

and the lack of safe sterilization of the electrodes as well as being 

painful for the patient. Nevertheless, in the non-invasive method 

that using surface electrodes, the activities of localized muscles 

very close to the skin can be determined. Also, this method is easy 

to apply, painless for the patient and suitable for on-the-go 

analysis. [5], [6]. 

The bioelectric activity that occurs during muscle contraction is 

recorded as a function of time. By examining the frequency and 

amplitude characteristics of the EMG signal, it is obtained that 

critical information about the physiological activity and function 

of the muscle. This method is a frequently used technique for the 

detection of medical anomalies, muscle-nerve examination and 

investigation of the biomechanics of mammalian movement. 

According to the standards, the EMG signal has an amplitude of 

50µV ~ 5mV and a frequency range of 2 ~ 500 Hz [7]. 

Classification of EMG signals is of great interest in the fields of 

biomedical and robotics. Mostly, it has been widely used as a 

command signal to identify individual motions for the control of 

prostheses. In order to realize this purpose, individual movements 

need to be extracted from existing EMG signal patterns. Pattern 

recognition systems are used to classify existing EMG signals into 

one of the predefined movements [8], [9]. 

In the literature, many methods used to classify hand and finger 

movements have been presented, and the researchers use different 

feature extraction techniques. Lucas et al. (2007) classified six 

different hand movements with eight electrodes attached to the 

forearm in their studies. Discrete wavelet transformations were 

applied to EMG signals, and then classification was completed by 

the SVM method. In their study, they obtained a 5% inaccurate 

classification rate [10]. Khezri and Sadati (2007) classified six 

hand-based movements using surface EMG to recognize patterns 

of hand prosthesis movements in their study. Using both time and 

frequency domain features, they achieved a 96% classification 

performance with a hybrid classifier that uses ANN and ANFIS 

together [11]. Cerci et al. (2018) done classification by using EMG 

signals containing eight different hand movement data. After the 

feature extraction, they achieved 89%, 92% classification success, 

respectively, in the classification with kNN and ANN [12]. 

Ensemble methods are learning algorithms that combine machine 

learning techniques to obtain a better prediction model [13]. 

Multiple classifiers are combining at the last stage, and the overall 

result is obtained. Bagging (Boostrap Aggregating) and Boosting 

techniques are commonly used to create an ensemble. Bagging is 

a simple, usable method for decreasing variance for machine 

learning techniques that have high variance. It also prevents 
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overfitting [14].  

This study aims to determine the different finger movements from 

EMG signals. In the study, a publicly available EMG dataset of 

finger movements was used. The time-domain feature set was 

obtained from these EMG signals. The extracted feature set was 

classified with the ensemble bagged tree method to recognize 

different finger movements. 

2. MATERIAL METHODS 

In this study, it is aimed to classify ten different finger movements 

by using surface EMG signals. Ensemble bagged tree method was 

used in the classification. The proposed method consists of five 

steps. Firstly, data were obtained from the EMG finger movement 

dataset. Segments were formed with 10% overlap on the dataset. 

Then, the features used in the classification were obtained in the 

time domain. The obtained features were classified using the 

ensemble classifier. Lastly, decision making was carried out 

according to classification results. The flow diagram that describes 

these steps, in general, is given in Figure 1. 

 

Fig 1.  General flow diagram of the proposed method 

2.1. EMG Dataset 

 In this study, publicly available EMG finger movements dataset 

was used [15]. In this dataset, finger movements were taken from 

8 subjects (six males and two females). The EMG signal data were 

obtained with the help of two surface electrodes, as shown in 

Figure 2. Each channel contains 20,000 samples. There are six 

samples of each movement class. The arms of the subjects were 

fixed to the chair to reduce the noise from other muscles. Using the 

Delsys Bagnoli-8 amplifier, EMG signals were amplified 1000-

fold. The EMG signal was sampled at 4000 Hz with a 12-bit 

analogue-to-digital converter (National Instruments, BNC-2090). 

The data set was obtained using Delsys EMGWorks software. The 

obtained signals were applied with a bandpass filter between 20 

and 450 Hz [15]. 

 

Fig 2.  Surface electrodes placement in obtaining the EMG signals [15] 

In the data set, the classes formed by using individual and 

combined fingers were determined. There are a total of 10 different 

classes: Thumb (T), Index (I), Middle (M), Ring (R), Little (L) and 

the pinching of combined Thumb–Index (T–I), Thumb–Middle 

(T–M), Thumb–Ring (T–R), Thumb–Little (T–L), and finally the 

hand close (HC). The screenshots of 10 different finger movements 

are given in Figure 3. 

2.2. Feature Extraction 

Data windowing is an important point in data segmentation. Each 

segment with a predefined length is used for feature extraction 

[16,17]. There are two window approaches, overlapping 

windowing and disjoint windowing. It is stated that the windowing 

technique, which overlaps with the studies, gives better results [15, 

18]. In this study, overlapping windowing is applied. A window 

length of 150 ms to 250 ms was recommended in the studies with 

the EMG signals [19, 20]. The window length was chosen as 200 

ms. Most of the features used in EMG signals are time-domain 

(TD) features. TD features give good results in both clinical and 

pattern recognition-based applications. In this study, time-domain 

characteristics were extracted from each segment for the proposed 

method. The extracted temporal features are as follows [21, 22]: 

 

Mean absolute value (MAV) is one of the commonly used 

features, mainly as it provides information with amplitude levels 

of muscles. 

MAV =
1

𝑁
∑ |𝑥𝑖|𝑁

𝑖=1   (1) 

Root mean square (RMS) is modelled as amplitude modulated 

Gaussian random process. 

RMS = √
1

𝑁
∑ 𝑥𝑖

2𝑁

𝑖=1
  (2) 

Waveform length (WL) is found through the measurement of 

cumulative amplitude variations between samples over a full 

period. 

WL = ∑ |𝑥𝑖+1 − 𝑥𝑖|𝑁−1
𝑖=1   (3) 

Fig 3.  Types of finger movement [15] 
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Varyans (VAR) gives information about the strength of the EMG 

signal and is, therefore, a widely used feature. In the equation, �̅� 

refers to the mean of the signal. 

𝑉𝐴𝑅 =
1

𝑁
∑ (𝑥𝑖 − �̅�)2𝑁

𝑖=1   (4) 

Slope Sign Change (SSC) is a method based on counting 

transitions from positive to negative or negative to positive on the 

EMG signal. Noise immunity of the property can be increased by 

enabling it to count the changes above a specified threshold level. 

𝑆𝑆𝐶 = ∑ [𝑓[(𝑥𝑖 − 𝑥𝑖−1) × (𝑥𝑖 − 𝑥𝑖+1)]];
𝑁−1

𝑖=2
 (5) 

f(𝑥) = {
1, if  𝑥     ⩾ threshold

0,                  otherwise
  

Zero Crossing (ZC) parameter calculates the number of times the 

signal has passed through the zero points. This feature is noise 

sensitive, so it is necessary to determine a specified threshold level. 

ZC = ∑ [sgn(𝑥𝑖 × 𝑥𝑖+1) ∩ |𝑥𝑖 − 𝑥𝑖+1| ⩾ threshold]
𝑁−1

𝑖=1
; (6) 

sgn(𝑥) = {
1, if  𝑥     ⩾ threshold

0,                  otherwise
 

  

Myopulse percentage rate (MPR) is the average of the number of 

times the EMG signal exceeds a predefined threshold. 

𝑀𝑌𝑂𝑃 =
1

𝑁
∑ [𝑓(𝑥𝑖)]

𝑁

𝑖=1
  (7) 

f(𝑥) = {
1, if  𝑥     ⩾ threshold

0,                  otherwise
 

  

2.3.  Classification 

In this study, ensemble bagged tree learning technique was used. 

In the bagging ensemble algorithm, the N-dimensional training set 

is generated randomly and repeatedly from the same size training 

set. Each generated training set is trained with the decision tree 

algorithm, and its results are combined by majority voting. The 

number of bootstrap samples determines the number of trees to be 

created, and the majority vote is applied to the results of decision 

trees trained by different subsets [23]. This process reduces the 

problem of overfitting of decision trees and improves 

generalization. The bagged tree block diagram is given in Figure 

4. 

Classification accuracy is calculated by the average of the 

confusion matrices of classifiers in each case. The overall 

classification accuracy is expressed as a ratio between the correctly 

classified samples to the total number of samples [24]. 

3. RESULTS and DISCUSSION 

In this study, 14 temporal features obtained from a two-channel 

surface EMG signal were used in the classification. A 10-fold 

cross-validation technique was used to train the classifier and to 

avoid overfitting. In 10-fold cross-validation, the dataset is 

randomly divided into ten subsets of equal size. One of the subsets 

is taken as the test set, and the remaining sets are used as the 

training set. By repeating this process ten times, it is performed in 

a form that the test set will have a different algorithm in each 

repeat. The results are obtained by averaging the performance 

values of the test sets obtained.  

In this study, the effect of the change in the number of decision 

trees on the ensemble bagged tree was evaluated (Figure 5). When 

30 tree base learners are used, the bagged tree classifier has an 

overall classification accuracy of 96.6%. In addition, 75.3% 

classification performance was obtained with a single decision 

tree. These results show that the proposed method provides a good 

improvement in classification accuracy.   

 

Fig 5.  The classification accuracy of bagged tree classifier 

The accuracy rates obtained for each class with the bagged tree 

classifier are given in Figure 6. At the determining of the Thumb 

Class (TI) finger movement, it seems that the proposed classifier 

shows a 99% classification performance. The lowest classification 

performance is obtained with a 95% classification rate for 

determining Ring (R) and Little (L) movements. 

 

Fig 6.  Classification accuracy for each type of finger movement 

 

Fig 4.  A schematic illustration of ensemble bagged tree classifier [23] 
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In literature, for ten classes an average of 91.40% classification 

accuracy with the SVM based classifier [18], for eight classes an 

average of 88% and 92% classification accuracy with kNN and 

ANN-based classifiers respectively [12], for ten classes 

approximately 92% classification success with SVM and kNN 

based classifiers [15] were obtained on the EMG finger movements 

dataset. On the other hand, the classification success for ten classes 

is 96.6% with the ensemble bagged tree classifier which was 

proposed in this study. 

In this study, it was aimed to determine ten different finger 

movements obtained from eight different subjects by using EMG 

signals. Features have been extracted by performing the 

segmentation process on the EMG signals. The applied bagged tree 

classification method can be considered as successful, and the 

classification rates are over 95% for each type of finger movement. 

The result shows that the proposed classifier can be used 

successfully to determine finger movements. Classification 

accuracy can be increased by different feature extraction methods 

and segmentation methods.  
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