

Abstract - One of the most important calculation operation in

many systems is the calculation of the square root of numbers. In
digital systems and digital signal processing there are some
different algorithms to calculate the square root of numbers.
Designing of the square root calculator depends on the algorithm
or method for the programming format. The Babylonian method
was examined and used as a different approach in this study. The
digital square root calculator designed is mainly based on the
Babylonian method and design was implemented with VHDL
language.

Keywords – VHDL, square root, Babylonian method, FPGA

I. INTRODUCTION
Square root is a necessary and frequently used mathematical

expression in applications such as image processing, sound
processing, scientific calculation. Numerous computational
algorithms such as mathematical predictive method and
restoring method have been developed for square root
calculation. In general, algorithms have been developed in
order to perform the calculation process quickly and to obtain
an accurate result [1, 2].

In many applications, the Newton method is adopted for the
square root calculation. In this method, the approximate value
of the square root is calculated by iterations. In order to obtain
the iteration equation, Newton method can be used which
approximately result is obtained in iteration equation. In each
iteration, multiplication, addition and subtraction operations are
performed and this causes process density. In order to
accelerate the multiplication in the calculation, the parallel
multiplier is used by partial production and then an aggregator
is used to obtain the result of the production. Since multipliers
require a very large number of gates, it is impractical to use
multiple multipliers to achieve exact square root calculations
[3].

In many of the science and engineering applications, square
root calculation has an important place. In applications, the
result of an operation is not always expected to be an integer.
For this reason, square root calculations with decimal numbers
are studied. On FPGA, operations with decimal numbers are
provided by the decimal points libraries called as floating-point
and fixed-point libraries. Hasnat et al [4] presented square root
and inverse square root calculation by using the Quake’s
algorithm. In their studies, they applied square root calculation
using single precision floating point library.

The current commercial DSP and embedded processors do
not provide special complex number calculation units. Instead,
they use a number of real basic computational processes at the
software level. This parsed form of calculation results in
reduced computational performance due to process complexity.
The software unit called Cordic is an advanced library that
allows you to handle process with complex and trigonometric
numbers. Cordic provides to done complex arithmetic
operations with only summing and shifting operation [5].

In their study, Leeser and Wang designed the square root
calculation with the floating-point library of variable precision.
Their calculator is based on the computational algorithm called
Taylor Series in the literature. In their calculator, a small lookup
table and small multipliers are used to obtain the first few terms
of the Taylor series. The methodology they offer is in IEEE
standard format and is flexible so that different formats can be
obtained from their method. They stated that their methods
support zero and nearest rounding property [6].

In addition to speed, it has an important place that the field
used in calculation operations. In the literature, there are studies
in which the minimum field is used within the square root
calculation algorithms. This algorithm is based on the formula
called Dwandwa Yoga. In their study, Kachhwal and Rout
presented square root calculators based on the old Indian
mathematical formula [7]. Their calculator generates 16-bit
floating-point output versus 24-bit floating-point input. They
argued that the method presented by them had the lowest area
usage.

In this study, square root calculator was performed based on
Babylon method. While calculating perfect-square numbers is
easy in mathematics, the calculation of the roots of non-perfect
square numbers are very difficult. In the Babylon method, the
square root is calculated by a numerical repeating process. The
first algorithms for the square root calculation process are
known to be found by Babylonians [8].

II. MATERIAL AND METHOD
In this study, the Babylonian method, called the simple

repeating algorithm, was used to calculate the square root of
numbers. This algorithm is based on the repetition of simple
operations until the result is reached regardless of whether the
number is a perfect-square number.

In the Babylonian method, it is stated that the constant
number that the series of numbers generated by the iteration
algorithm for any initial value approaches is the result of the

Implementation of Babylonian Square Root
Computation Algorithm with VHDL

Abdulkadir SADAY1, Ilker Ali OZKAN2

1Selcuk University, Konya/Turkey, asaday@selcuk.edu.tr
2Faculty of Technology, Selcuk University, Konya/Turkey, ilkerozkan@selcuk.edu.tr

International Conference on Engineering Technologies (ICENTE'19) Konya, Turkey, October 25-27, 2019

E-ISBN: 978-605-68537-9-1 488

square root of the number to be rooted [8]. The square root
value of a number starts with an estimate of any initial value.
This randomly selected value is the initial value of the repetition
rule, and each new value obtained as a result of the operation is
the new initial value.

In the Babylonian method, the calculation in the repetition
process is made by using Equation 1.

 (1)

A set of numbers is obtained by applying the repetition rule
with any initial value in the equation. The number approached
and repeated as a result of the sequence of numbers is the square
root of the desired number.

If it is wanted to calculate the square root of the number 12
as an example of calculating the square root with the Babylon
method, first any number should be selected for the initial
value. With this initial value, the repetition rule must be applied
and the number that is repeating in the number array must be
found. The result can be expressed as a repetitive number. The
square root calculation of the number 12 depending on the
algorithm is given in Figure 1.

Figure 1 – The square root calculation of 12 by the Babylon method

As shown in Figure 1, a random number is assigned for x0
and the repetition rule is calculated based on this initial value.
At each step, the result was calculated using the new initial
value. The result is repeated for 4 steps as shown in the number
array. In this case, the repetitive number is the square root of
the number given at the entry. When this process is done with
the calculator, it is concluded that the square root of the number
12 is 3.46.

Compiled libraries as standard can be used in the calculation
of arithmetic operations with FPGA. Floating-point and fixed-
point libraries are standard libraries that allow operations with
decimal numbers. Fixed-point is frequently used for simple
decimal numbers, while floating-point is used for more
complex decimal numbers. Due to its structure fixed-point is an
easier and faster library to implement and calculate. It is
frequently used in applications in which result can be predicted
and which requires speed [9].

In the literature, many algorithms such as Rough estimation
method, exponential identification, Taylor series, Newton
Raphson method and digit-by- digit method are used in the
studies. There are many applied methods of square root
calculation. They can be grouped into two classes as predictive
and digit-by-digit methods. The digit-by-digit calculation
method is generally divided into two groups, restoring and non-

restoring. In this method, the computational speed is lower than
other methods [9, 10].

The implementation of the algorithm that returns the
approximate square root result by the Babylon method on
FPGA is uncomplicated because that the method contains
simple mathematical expressions. Therefore, the use of a fixed-
point library is sufficient to implement this algorithm and to
obtain results. The use of fixed-point provides the advantage of
quick calculation for applications requiring a square root
calculator [11].

In the fixed-point library, the definitions are made in the form
of sfixed (signed) and ufixed (unsigned) numbers. In defining
the decimal number by VHDL, the exact part and the decimal
part of the number are expressed separately. The definition is
made by specifying a positive integer of the desired length for
the full part of the number and negative integers for the decimal
part. The expression of a sample number with the fixed-point
library is can be defined as .

The definition shown in Figure 2 indicates that the full part
of the x number is 11-bit and the decimal part is 8-bit. As the
value defined for the full part increases, the magnitude of the
number that can be expressed increases, as the value defined for
the decimal part increases, the decimal precision of the number
to be expressed increases. In the calculation of the numbers
expressed by the fixed-point, multipliers 20, 21, 22.. are used for
the full part and 2-1, 2-2, 2-3.. for the decimal part. If the number
is negative, the first bit indicates the sign and the calculation is
made as 1's complement to the number.

In the implementation of the Babylon method with VHDL,
the repetition rule is provided by a simple loop. The initial
estimate value is calculated by dividing the number by the
largest and smallest multiplier. In the calculator, 4 variables are
used as number, initial values, temporary value and output. The
square root of the value defined by the number variable is kept
at the temporary value until the output value is repeated. In the
repetition where the output value is equal to the temporary
value, the square root of the number is found.

III. RESULTS
FPGAs are programmed with programming languages called

Verilog and VHDL [7]. In this study, the square root calculation
process based on the approached Babylon method is
emphasized and the square root calculator software is realized.

The realized square root calculator was run on Nexys 4 DDR
FPGA development board of Digilent company. As input, the
16-bit switch on the development board is used and the result
calculated on the output is expressed with 16-bit led. In order to
indicate the completion of the calculation process, a status
changing led is assigned to the result and a change in status is
provided after the calculation.

The flowchart of the calculation of the Babylon method using
FPGA with VHDL programming language is given in Figure 2.

International Conference on Engineering Technologies (ICENTE'19) Konya, Turkey, October 25-27, 2019

E-ISBN: 978-605-68537-9-1 489

Figure 2 – Babylonian Algorithm flow chart

The process flow shown in Figure 2 starts with the

assignment of the number to the input. With the assignment of
the number, a random number is assigned to the initial value x0.
This assignment is performed in the random number generation
block generated by the VHDL and is valued according to the
multipliers of the input number. After the initial value is
assigned, the repeating rule loop given in Equation 1 is
executed. The value calculated during the loop is assigned to
the temporary variable and held in it until the next calculation.
If the temporary variable is equal to the calculated result, the
square root calculator block terminates by returning the result.
If the result is not equal to the transient variable, the repeating
rule is reapplied, and this loop continues until it is equal.

The result obtained after the loop gives the square root of the
entered number. In integer operations, the result gives the value
closest to the actual value. The rounding of the number up or
down varies depending on the programmer's choice during
programming. In this study, square root calculator was realized
using fixed-point library. Thus, even if the square root value of
the entered number is a decimal number, it can be expressed.

Several examples of numbers calculated with the performed
VHDL software are shown in Figure 3.

Figure 3 – Square root calculations of different numbers with FPGA

(a) 12 (b) 144 (c) 15600

The square root value 3.46 of the number 12 calculated in
Figure 1, is the same as the algorithm result performed on

FPGAs. As can be seen in Figure 4, the square root calculator
with the Babylon method works on FPGA in a way that yields
successful results in decimal numbers.

Calculations were tested at different clock frequencies of the
processor with different values. For 10us, 1us and 10ns clock
pulses, the results were checked for each rising edge. According
to the results obtained, the algorithm works at a speed that can
respond in a clock pulse. It was observed that the calculation
time did not change by keeping the numbers to be calculated at
very high values and assigning the predictive initial variable at
far values. However, depending on the application that use the
square root calculator and the complexity of the numbers, it is
possible to obtain the calculation result at different time
intervals.

As a result of this study, a square root calculator based on the
Babylonian method, which can calculate with integer and
decimal numbers and which the calculation result can be
obtained as a decimal number has been realized by using FPGA
with VHDL programming language.

REFERENCES
1. Jidin, A.Z. and T. Sutikno, FPGA Implementation ofLow-Area

Square Root Calculator. Telkomnika, 2015. 13(4): p. 1145.
2. Nanhe, A., et al., Implementation of fixed and floating point square

root using nonrestoring algorithm on FPGA. International Journal
of Computer and Electrical Engineering, 2013. 5(5): p. 533.

3. Li, Y. and W. Chu. A new non-restoring square root algorithm and
its VLSI implementations. in Proceedings International Conference
on Computer Design. VLSI in Computers and Processors. 1996.
IEEE.

4. Hasnat, A., et al. A fast FPGA based architecture for computation
of square root and inverse square root. in 2017 Devices for
Integrated Circuit (DevIC). 2017. IEEE.

5. Yang, B., D. Wang, and L. Liu. Complex division and square-root
using CORDIC. in 2012 2nd International Conference on Consumer
Electronics, Communications and Networks (CECNet). 2012. IEEE.

6. Leeser, M. and X. Wang, Variable precision floating point division
and square root. 2005, NORTHEASTERN UNIV BOSTON MA
DEPT OF ELECTRICAL AND COMPUTER ENGINEERING.

7. Kachhwal, P. and B.C. Rout. Novel square root algorithm and its
FPGA implementation. in 2014 International Conference on Signal
Propagation and Computer Technology (ICSPCT 2014). 2014.
IEEE.

8. Flannery, D., The square root of 2: A dialogue concerning a number
and a sequence. 2006: Springer Science & Business Media.

9. Sutikno, T., An efficient implementation of the non restoring square
root algorithm in gate level. International journal of computer
theory and engineering, 2011. 3(1): p. 46.

10. Zhu, H., Z. Lei, and F.P. Chin, An improved square-root algorithm
for BLAST. IEEE Signal Processing Letters, 2004. 11(9): p. 772-
775.

11. Li, Y. and M. Leeser, HML: an innovative hardware description
language and its translation to VHDL. 1995: IEEE.

International Conference on Engineering Technologies (ICENTE'19) Konya, Turkey, October 25-27, 2019

E-ISBN: 978-605-68537-9-1 490

View publication stats

https://www.researchgate.net/publication/367051903

