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INTRODUCTION
Deep learning is a machine learning method that has gained a lot of popularity 

and is still developing, especially in its ability to accurately analyze images. It is a 
learning method that can be used for both supervised and unsupervised learning and 
can predict outputs based on the dataset used as input. The depth it has, namely the 
hidden layers, distinguishes it from machine learning. Using non-linear operations 
for feature extraction and transformation, it extracts different features from each 
layer of the image it gets as input [1].

Although there are various definitions of deep learning, the common feature of all 
of them is that it has multiple layers of nonlinear operations and can extract features 
between layers using supervised or unsupervised learning [2]. The most common 
deep learning architectures are Convolutional Neural Networks, Autoencoders, 
Generative Adversarial Networks, and Boltzman Machines.

Convolutional neural networks (CNN) are feedforward neural networks that 
use convolution in at least one of their layers to recognize two-dimensional images 
such as images and videos [1]. Many problems have been successfully solved using 
CNN algorithms [3]. Even though convolutional neural networks (CNN) have been 
successfully used in computer vision for many years, there are some constraints 
when extracting image features.

Translation invariance is one of these constraints [2]. The ability of an object to 
be recognized as an object even if its location changes is referred to as translation 
invariance. 
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Although CNN correctly identifies a normal human face in Figure 1, the image 
with the mouth and eyes misplaced is also identified as a face. CNN recognizes 
objects in the image with high accuracy. It cannot, however, define the part-whole 
relationship because it cannot store spatial information. It recognizes the parts but 
may not recognize the whole correctly because it cannot define the part-whole 
relationship. As has been shown in this example, CNN needs two eyes, a nose, and 
a mouth to classify an image as a face. The positions of the objects are insignificant.

Point-of-view invariance is another constraint. Point-of-view invariance refers 
to an object’s ability to be recognized regardless of its direction. When faced with 
different angles of the same image, CNN may misunderstand and fail to classify it 
correctly. Because it does not evaluate the hierarchical relationship between objects 
and the whole, it may produce incorrect results. Because of the angle difference, the 
inverted human face in Figure 2 cannot be correctly classified.

The pooling process is one of CNN’s most significant constraints. In CNN’s 
size reduction is accomplished through pooling in order to reduce computational 
complexity. The spatial information of the features is lost during this process due 
to pixel loss, and the method’s success is decreased. In order for the network to 
increase its performance, more training data is needed. This increases the number of 
parameters in the network and, as a result, increases the training time [4]. Figure 3 
shows an example of the pooling process.

 
Figure 1. Translation Invariance Example         Figure 2. Point of View Invariance Example
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Sabour et al. [5] proposed Capsule Network Architecture (CapsNet) and a 
dynamic routing algorithm to overcome these constraints of convolutional neural 
networks and correctly analyze data. CapsNet, unlike CNN, considers not only 
objects but also the relationships between them. It examines object relationships 
as part-whole relationships. It also stores these relationships via vectors. Instead 
of CNN’s scalar output feature maps, CapsNet uses vector output capsules, and 
the dynamic routing algorithm is used in place of pooling. They used the squash 
function as the activation function. They tested the proposed architecture on the 
MNIST dataset and discovered that it performed better than CNN while using fewer 
parameters.

Table 1 shows the error rates of CapsNet in training different data sets.
Table 1. Error rates of CapsNet in different datasets[5]

Dataset Error Rate (%)

MNIST 0.25
MultiMNIST 5.2
CIFAR10 10.6
smallNORB 2.7

WHAT IS A CAPSULE?
The capsule is the basic unit of CapsNet and is composed of many neurons. 

These neurons store not only the objects in the image, but also information about 
their physical properties, such as pose (position, direction, and size), deformation, 
color, and texture [6].

Figure 4 shows an example of a capsule containing a neuron array. The house 
capsule is consisting of neurons that represent window, door, and roof objects. The 
information in the capsule is saved in vector format. The length of the vectors shows 
the probability that the object exists in the image, while the direction indicates where 
its placement in the image. Figure 5 shows the vector’s direction change in relation 
to the direction of the roof object.



248 INTERNATIONAL RESEARCH IN ENGINEERING SCIENCES III

Figure 4. Capsule Example

Figure 5. Change of Vector According To The Change of Direction of The Object

How The Capsule Works?
The lower-level capsules from the previous layer are represented by the , 

,, and  capsules. Weight matrices containing their relationships with higher-level 
capsules are multiplied by these capsules. Weight matrices store the part-whole 
relationship between high-level capsules and low-level capsules. The estimated 
output vectors  ,  , and  are obtained as a result of the multiplication. The 
weighted sum is passed through the squash function to determine the capsule’s 
output value, . Figure 6 shows the capsule’s procedure.
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Figure 6. The Capsule’s Procedure

Squash Function
A structure called the squash function in capsule networks is created to replace 

the place of activation functions like ReLU, Sigmoid, and Tangent used in deep 
neural networks. Squash is a vector-outputting activation function. It makes sure 
that long vectors are near 1, and that short vectors are near 0. It is a nonlinear 
function that restricts the neuron’s output value to a range of 0 to 1 [5]. The equation 
of the squash function is given in Equation 1. The first part of the equation restricts 
the output value to the range of 0 to 1, and the second part of the equation transforms 
the value into a unit vector.

                                                                                                                          (1)

Dynamic Routing Algorithm
The dynamic routing algorithm is used to connect the capsules in the lower layer 

with the capsules in the upper layer. This algorithm determines the calculation of 
the routing coefficients that show which capsule will be connected to which capsule. 
The algorithm is shown in Algorithm1.

Algorithm1. Dynamic Routing Algorithm [5]

1 procedure ROUTING ( , r,l)

2   for all capsules i in layer l and capsule j in layer (l+1): ß 0.

3     for r iterations do  

4       for all capsule i in layer l:  ß softmax ( )

5       for all capsule j in layer (l+1):  ß 

6       for all capsule j in layer (l+1):  ß squash ( )

7          for all capsule i in layer l and capsule j in layer (l+1):   ß 

return 
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In this algorithm,  is the temporary similarity variable with an initial value 
of 0. Its value is updated during each iteration. By passing  through the softmax 
function, the  matching coefficients are calculated (Equation 2).

                        (2)

                         (3)

                    (4)

The estimated output vector of the capsule  is obtained by multiplying the 
input values of the  capsule with the weight matrix  (Equation 2). Each 
capsule’s prediction vector is multiplied by the matching coefficient, the products 
are added up, and the weighted sum is found (Equation 3). The value  is passed 
through the squash function, and the capsule’s output value, , is computed.  is 
updated in the final step of the algorithm, and all steps are repeated r from step 4.

Margin Loss Function
The loss function is calculated after the digit capsule layer. The vector’s length 

represents the possibility that the object is in the image. Margin loss is calculated 
for each output capsule based on this value. The total margin loss is calculated by 
adding the margin losses of all capsules.

                          (5)

The margin loss is calculated using the formula shown in Equation 5.  1 is 
used if the prediction is correct; otherwise,  0 is used. If the prediction is correct, 
the first part of the equation is used (Equation 6); otherwise, the second part is used 
(Equation 7).

                                                                                                                        (6)
 equals 1 if the prediction is correct. The capsule’s output value is subtracted 

from the  value and squared. The value of  is assumed to be 0.9. If the 
capsule’s output value is greater than 0.9, the error value is zero; otherwise, it is 
non-zero.

                                                                                                                     (7)
 is 0 if the prediction is incorrect. It is squared by subtracting the  value from 

the capsule’s output value. The value of  is assumed to be 0.1. If the capsule’s 
output value is less than 0.1, the error value is zero; otherwise, it is non-zero. The 
lambda value ( ) is set to 0.5 for the formula.

EM (Expectation-Maximization) Routing Algorithm
The expectation-maximization algorithm is used in EM routing. Instead of 

capsules consist of neurons, the algorithm proposed by Hinton et al. [7] used 4x4 
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pose matrices. These pose matrices contain the spatial relationships of the object 
(transformation and translation matrices). The length of the vector in the dynamic 
routing algorithm indicated the probability of the object’s existence. The α parameter 
is used instead of the vector length in this algorithm.

Each capsule in the lower layer casts one vote for the capsules in the upper 
layer in the EM algorithm. The capsules ( ) in the lower layer are consists of 
each capsule’s 4x4 pose matrix ( ) and activation probabilities ( ). Within the 
algorithm, the votes from each capsule are weighted by the assignment coefficient 
and updated iteratively (Equation 8).

                                                                                                          (8)
The pose and activation values of the capsules in the upper layer are calculated 

using the EM algorithm. The values of  and  are input into the algorithm. 
The Gaussian distribution clustering method is used in this algorithm to group sub-
level capsules. As a result, each upper-level capsule corresponds to a Gaussian 
distribution, and each lower-level capsule corresponds to a point in that Gaussian 
distribution. The algorithm is shown in Algorithm2.

Algorithm2. Expectation-Maximization Algorithm [7]

1: procedure EM ROUTING (α, V)     

2:    ,j  : ß 1/|  |
3:     for r iterations do  

4:         i  : M STEP (α, R, V, j)     

5:         h:   : M STEP (α, R, V, j)     
    return α, M

1: procedure M-STEP (α, R, V,j)     

2:          : ß *

3:         h:  ß  

4:         h:  ß 

5:          ß (  

6:          ß logistic (  ( ))

1: procedure E-STEP ( ,  α,V, i)     

2:
        j:   :  ß  exp(- )

 3:       j:   :  

The EM algorithm uses backpropagation to update the transformation matrices 
that retain the capsules’ information. E-STEP and M-STEP procedures are used to 
perform this.
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CAPSULE NETWORKS (CAPSNET) ARCHITECTURE
The architecture of the CapsNet is divided into two parts. The encoder, which is 

the first part, extracts the image’s features and performs classification. The image is 
reconstructed in the second part, the decoder. The architecture is shown in Figure 7. 
Table 2 shows the input and output dimensions of the architecture’s layers, as well 
as the number of parameters used in each layer.

Figure 7. CapsNet Architecture
Table 2. Summary Of Capsule Network Architecture And Number Of Parameters Used

Layer Input 
Dimension Output Dimension The Number Of 

Parameters
Convolution Layer 28*28 20*20*256 20992
Primary Capsule Layer 20*20*256 6*6*8*32 5308672
Digit Capsule Layer 6*6*8*32 16*10 1497600
Fully Connected Layer 1 16*10 512 82432
Fully Connected Layer 2 512 1024 525312
Fully Connected Layer 3 1024 784 803600
Total Number of Parameters 8238608

Encoder
The encoder is consisting of three layers: a convolution layer, a primary capsule 

layer, and a digit capsule layer.

Convolution Layer
This layer extracts the image’s basic features. It is the first layer. Input is a 28*28 

single-channel image. Applying the convolution operation with a 256 kernel size, 
9*9 filter, and 1 stride to the input image obtains a 20*20*256 output tensor.
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Primary Capsule Layer
The primary capsule layer is the architecture’s second layer. It takes the previous 

layer’s 20*20*256 tensor as input. Applying the convolution operation with 256 
kernel size, 9*9 filter, and 1 stride results in a tensor with a size of 6*6*256. The 
reshaping procedure produces 32 8-dimensional capsules. At the layer output, the 
squash function is used as the activation function.

Digit Capsule Layer
This layer takes a tensor of size 6*6*8*32 as input. 10 capsules with 16 

dimensions each are created as a result of the dynamic routing procedure. The output 
is determined by the capsule with the highest probability value among the capsules. 
The loss calculation is performed after this layer, and the image is reconstructed 
using fully connected layers.

Decoder
To reconstruct the input image, the decoder consists of interconnected layers. 

It is made up of three fully connected layers. The first layer contains 512 neurons, 
the second layer contains 1024 neurons, and the third layer contains 784 (28*28) 
neurons. In the first two layers, ReLU activation function is used, and Sigmoid 
activation function is used in the final layer. It takes 16-dimensional vectors as input 
and reconstructs a 28*28 image.

Example of CapsNet
The CapsNet architecture is trained on the PneumoniaMNIST dataset, which is 

part of the MedMNIST dataset [8], in this section. The PneumoniaMNIST dataset 
contains 5.856 28*28 pediatric chest X-ray images. The data set is split into training 
and test data in a 9:1 ratio. The data is divided into two classifications: Pneumonia 
and Normal. Figure 8 shows images from the data set.

Figure 8. Images from the Pneumonia Dataset
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The case study was performed on a device equipped with an Intel Xeon Gold 
6226R processor and an Nvidia Grid RTX8000-12Q graphics card, as well as Python 
3.8, Tensorflow2.3, CUDA10.1.243, and cuDNN7.6.5 technologies.

The study available at “https://github.com/XifengGuo/CapsNet-Keras” was 
used in the development of the CapsNet model [9]. 

First, the complexity matrix for the performance evaluation of the CapsNet 
architecture on the Pneumonia dataset was obtained. Table 3 contains explanations 
for the complexity matrix.

Table 3. Confusion Matrix

Predicted Class

Normal Pneumonia

A
ct

ua
l C

la
ss Normal

TP
Patient does not have pneumonia, 
correctly identified

FN
Patient does not have pneumonia, 
misidentified

Pneumonia
FP

Patient Pneumonia patient, 
misidentified

TN
Patient Pneumonia patient, correctly 
identified

Accuracy, Precision, Recall, and f1-score metrics were used to evaluate 
performance based on this confusion matrix. Table 4 shows the formulas used to 
calculate these values.

Table 4. Formulas Of Performance Metrics

Metric Formula
Accuracy  (TP+TN)/(TP+TN+FP+FN)
Precision TP/(TP+FP)
Recall TP/(TP+FN)
f1-score 2 * (Precision * Recall) / (Precision + Recall)

Figure 9 shows the confusion matrix formed as a result of training the capsule 
network architecture with the PneumoniaMNIST dataset. Table 5 shows the 
performance metrics computed as a result of the confusion matrix.

Figure 9. Confusion Matrix
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Table 5. Performance Metrics

Metric Formula

Accuracy  (TP+TN)/(TP+TN+FP+FN)
Precision TP/(TP+FP)
Recall TP/(TP+FN)
f1-score 2 * (Precision * Recall) / (Precision + Recall)

In addition, the Loss and Accuracy graphics of the study are presented in Figure 
10.

Figure 10. Accuracy and Loss Graphics

CAPSNET IMPLEMENTATIONS
Various studies in the literature aim to improve the performance of Capsule 

Networks architecture and make it more effective in problem-solving. Various 
changes have been made by making architectural or dynamic routing algorithm 
innovations.

To reduce the computational complexity in capsule networks, Zhang et al. [10], 
used a kernel density estimation approach in a dynamic routing algorithm. They 
proposed two dynamic routing algorithms based on this. In one, they used the mean 
shift clustering method, while in the other, they used the expectation maximization 
method. While the Mean Shift clustering method resulted in 97.40%, 99.58%, 94%, 
and 84% accuracy on SmallNorb, MNIST, Fashion-MNIST, and CIFAR10 datasets, 
the other method resulted in 97.80%, 99.58%, 99.68%, and 85.70% accuracy. Zhao 
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et al. [11], used the max-min normalization method rather than the softmax function, 
claiming that the softmax function limits the solution range when calculating the 
routing coefficients that provide communication between the lower and upper 
layers. They obtained 99.55% accuracy in the MNIST dataset and 75.22% accuracy 
in the CIFAR10 dataset as a result of the study.

Rezwan et al. [12] aimed to do a study that would reduce the memory requirement. 
For transformation matrices, they used simple matrix multiplication. In architecture, 
they used both vector and matrix poses. The Convolutional Capsule layer, named 
“ Single Matrix, was added to the architecture. They achieved 94.72% accuracy in 
the CIFAR10 dataset and 75.85% accuracy in the CIFAR100 dataset as a result of 
the study.

Ahmed et al. [13] did another study to reduce computational complexity. They 
proposed a non-recursive routing algorithm in the study to ensure communication 
between capsules. They claimed that their proposed mechanism outperforms basic 
capsule networks on MNIST, SmallNORB, CIFAR10, CIFAR100, and ImageNet 
datasets. To achieve faster convergence to the solution, Yang et al. [14] proposed a 
routing algorithm that employs a regularized quadratic programming approach rather 
than a dynamic routing algorithm. MNIST, FashionMNIST, and CIFAR10 data sets 
achieved 99.68%, 93.25%, and 85.96% accuracy, respectively. Xiang et al. [15], 
proposed a two-stage architecture called MS-CapsNet to reduce the computational 
complexity of capsule networks. The semantic and structural information of the 
image was extracted in the first stage using feature extraction, and the capsules were 
divided into three branches of varying sizes based on their feature order and coded 
in the second stage. In this study, they achieved 92.70% and 75.70% accuracy in the 
FashionMNIST and CIFAR10.

Rajasegaran et al. [16] proposed DeepCaps, a model that deepens capsule 
networks to increase success in complex images. They used a 3D convolution-
based deep learning algorithm and a class-independent decoder network. In the 
CIFAR 10, SVHN, Fashion MNIST, and MNIST datasets, they achieved 92.74%, 
97.56%, 94.73%, and 99.72%. Cheng et al. [17] proposed Cv-CapsNet and Cv-
CapsNet++ architectures for the analysis of complex and dense data. These three-
stage architectures use a densely connected complex-valued network for feature 
extraction. They achieved 94% and 85.64% accuracy in the Fashion MNIST and 
CIFAR 10 datasets.

The study of Xiong et al. [18] is another study for the analysis of complex data. 
They deepened CapsNet with the Conv-Caps layer by increasing the convolution 
layers for complex data analysis. To reduce the number of parameters, they developed 
the Caps-Pool layer, which allows features to be transferred without deterioration. 
On the CIFAR10 dataset, they achieved 81.29% accuracy using the proposed model.

Rosario et al. [19] performed a different study in which they divided the CapsNet 
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into lanes. Each lane of the multi-lane capsule network, MLCN, extracts different 
image features. In the MLCN, FashionMNIST, and CIFAR10 data sets, accuracy 
was 92.63% and 75.18%, respectively. Chang et al. [20] proposed a multi-lane 
capsule network with strict-squash based on this research (MLSCN). They aimed 
to highlight important features in the study by changing the squash function and 
limiting noisy and unnecessary features. They obtained 99.73%, 81.71%, and 
76.79% accuracy in MNIST, affNIST, and CIFAR10 datasets, respectively.

Hoogi et al. [21] proposed the Self-Attention-Capsule-Networks (SACN) 
architecture, which combined the self-attention module with capsule networks. 
The Self Attention module extracts important features by separating the region of 
interest from the image. While they achieved 99.5% accuracy on the MNIST dataset, 
they improved classification accuracy by 3.5% on the CIFAR10 dataset. They have 
also achieved high performance on a variety of medical images. Huang et al. [22] 
developed the Diverse Enhanced Capsule Network (DE-CapsNet) architecture for 
complex data analysis. In the architecture, they used a two-level primary capsule and 
a position-wise dot product. Within the dynamic routing function of the DE-CapsNet 
architecture, which is a hierarchical architecture, they used sigmoid activation 
function rather than softmax activation function. This architecture achieved 92.96% 
accuracy in the CIFAR0 dataset and 94.25%.

To reduce computational complexity, Singh et al. [23] proposed the DeepFear-
Caps architecture with minimal computational overhead. In the architecture, they 
used feature extraction blocks that included 3x3 convolution, batch normalization, 
and 1x1 convolution. They obtained 81.80%, 93.20%, 95.60%, and 99.60% accuracy 
on CIFAR10, FashionMNIST, SVHN, and MNIST data sets.

Another study is Zeng et al. [24]’s study on increasing the speed of capsule 
networks. Dense blocks were used in the study to reduce computational complexity 
and improve performance. They extracted features by using dense blocks. 
Furthermore, instead of using softmax in the routing algorithm, they calculated the 
variance and mean of the low-level capsules to find the pose vectors. To increase 
speed, they did not iterate over the routing algorithm. They observed that the number 
of parameters in the MNIST data set decreased as a result of the study, as did the 
error rate. Mazzia et al. [25] proposed a non-recursive routing algorithm. In the 
primary capsule layer, they used depth wise separable convolution. They utilized a 
squash function that is more sensitive to minor variations. After the primary capsule 
layer, they used self-attention. They reduced the error rate on the MNIST dataset to 
0.16% using this architecture.

APPLICATION AREAS OF CAPSNET
The Capsule Networks architecture has produced promising results in a variety 

of fields, including handwriting and text recognition [26, 27], emotion detection 
[28], medical image analysis [29], and cancer type detection [30,31].
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Kim et al. [32] done a study to estimate traffic speed on complex roads. They 
gathered information by strategically placing speed sensors throughout the city. In 
their comparison of CNN and CapsNet, CapsNet outperformed CNN by 13.1% in. 
Pari et al. [33] developed a traffic sign detection system in order to reduce traffic 
accidents and improve road safety.

Capsule nets have also been used in the detection and classification of various 
diseases. It is critical to identify the patient area and extract information from 
medical images. The evaluation of images by capsule networks using the part-
whole relationship has aided in the correct determination of this area. Afshar et 
al. [30] classified brain tumors with 86.56% accuracy using this feature of capsule 
networks. Kumar et al. [34] used CapsNet to detect diabetic retinopathy in retinal 
images. They performed separate image classification studies with five classes: No 
DR, Mild, Moderate, Severe, and Proliferative, and two classes: NoDR and DR. 
They had the most achievement when they used the VGG16 architecture before the 
Digit capsule layer. By increasing the number of convolution layers, they aimed to 
extract more features. They obtained 82.06% accuracy in 5-class classification and 
96.24% accuracy in 2-class classification as a result of the study. Another study in 
the field of health was conducted by Kavitha et al. [35] Detection of breast cancer 
from mammography images. Following segmentation in the study, the features of 
the patient area were extracted using capsule networks and classified using a Back-
Propagation Neural Network. They obtained high accuracy on various data sets as 
a result of the study.

Capsule networks have also been used in biometric recognition research. Linda et 
al. [36] developed a walking gait recognition system using sensor data. The research 
by Xu et al. [37] on gait recognition is another study. They used convolution layers 
before the fundamental CapsNet architecture in their study, CapsGaitNet. The study 
made use of the CASIA-B dataset, which contains silhouettes of various walking 
styles, and the OU-SIR Treadmill dataset, which contains walking images made 
while wearing various outfits. Good results were obtained in both data sets as a 
result of the study. 

CapsNet has also been used successfully in biometric recognition studies such 
as iris recognition [38], biometric recognition from ECG signals [39, 40], and 
fingerprint recognition[41].

A different study using capsule networks is a classification study in smart cities 
and IoT networks to ensure network security and service quality [42]. All data 
traffic used in smart city applications (smart homes, smart traffic management, 
smart shopping, smartphones, and so on) is classified as benign or malignant. A 
high accuracy rate was obtained as a result of the study.
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RESULTS
Despite the fact that CapsNet is a new architecture in the field of deep learning, it 

has produced successful results in a variety of areas. It has a more resistant structure 
to data transformations, especially because it hides the part-whole relationship [2]. 
This shows that network security is superior to that of other networks. Furthermore, 
by using capsules, the lack of information caused by the pooling process was 
eliminated, and the objects were better identified. Instead of the pooling process, the 
dynamic routing algorithm was used to evaluate and transmit all of the data in the 
image to the higher layers.

CapsNet is used in a variety of applications, including medical image analysis, 
biometric recognition, traffic systems, disease detection, and text recognition. 

Although it has advantages over convolutional neural networks, it does not perform 
as well as CNN’s in complex data sets with dense backgrounds, such as CIFAR10, 
because it considers every detail on the image. The success rate on complex data sets 
can be increased by making changes such as adding pre-architectural convolution 
layers and changing the dynamic routing algorithm [43,20,15,44,45]. Furthermore, 
despite having fewer parameters than CNN, the training time may be longer due to 
the high computational complexity.

CapsNet is an architecture that can be researched and developed because it is a 
relatively new design. It has the potential to make significant contributions to the 
field of computer vision by resolving challenges such as computation complexity 
and poor performance on complex data sets.
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